

Ruizhi Wu

Data Mining Lab, Big Data Research Center, UESTC Email: ruizhiwuuestc@gmail.com

Content

Rank Framework

Rank function: f(s, o)

Introduction of Rank

	Item1	Item2	Item3	•••	
User1	5	4			
User2	1		2		2
		?	?	?	
UserM	4	3			

Rank can be employed in a wide variety of applications in Information Retrieval (IR), Natural Language Processing (NLP), and Data Mining (DM).

Introduction of Rank

Document Retrieval Framework

Information retrieval: Text retrieval

Information retrieval based on relevance and important: PageRank, Boolean Model, Cosine similarity

$$f(r,q,d) = a * PR + b * BM + c * URL + \varepsilon$$

Why weren't early attempts use machine learning?

- Not enough features for ML to show value.
 - Term frequency
 - Inverse document frequency
 - PageRank
- Limited training data
 - Especially for real world use (as opposed to writing academic papers), click-through rate

あまででのです。
 数据挖掘实验室
 Data Mining Lab

- Modern systems especially on the Web use a great number of features:
 - Arbitrary useful features not a single unified model
 - Log frequency of query word in anchor text?
 - Query word in color on page?
 - # of images on page?
 - # of (out) links on page?
 - PageRank of page?
 - URL length?
 - URL contains "~"?
 - Page edit recency?
 - Page length?
- Click-through rate

Learning to rank framework

- Collect a training corpus of (*q*, *d*, *r*) triples
 - Relevance r is here binary (but may be multiclass, with 3–7 values)
 - Document is represented by a feature vector
 - $\mathbf{x} = (\alpha, \omega)$ α is cosine similarity, ω is minimum query window size
 - $-\ \omega$ is the the shortest text span that includes all query words
 - Query term proximity is a very important new weighting factor

数据挖掘实验室

Data Mining Lab

Train a machine learning model to predict the class r of a document-

query	pair

example	docID	query	cosine score	ω	judgment
Φ ₁	37	linux operating system	0.032	3	relevant
Φ_2	37	penguin logo	0.02	4	nonrelevant
Φ_3	238	operating system	0.043	2	relevant
Φ_4	238	runtime environment	0.004	2	nonrelevant
Φ_5	1741	kernel layer	0.022	3	relevant
Φ_6	2094	device driver	0.03	2	relevant
Φ_7	3191	device driver	0.027	5	nonrelevant

• A linear score function is then

Score(d, q) = Score(
$$\alpha$$
, ω) = $a^*\alpha + b^*\omega + c$

• And the linear classifier is

Decide relevant if $Score(d, q) > \theta$

- Precision Rate
- Recall Rate
- F1
- MAP(mean Average Precision)
- NDCG(Normalized discounted cumulative gain)

MAP(Mean Average Precision)

$$AP = \frac{\sum_{k=1}^{n} (P(k) \times rel(k))}{number _of _relevant _document}$$

```
Q1: rank 1, 2, 4, 7
```

AP=(1/1+2/2+3/4+4/7)/4=0.83

Q2: rank 1, 3, 5

AP=(1/1+2/3+3/5)/3=0.7555

MAP= (0.83+0.7555)/2=0.79

数据挖掘实验室 Data Mining Lab

NDCG(Normalized discounted cumulative gain)

$$DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2^i}$$

rel is a gain of every document

3、1、2、3、2 DCG = 3 +(+1.26+1.5+0.86)=7.62

```
NDCG = \frac{DCG_p}{IDCG_p} Ideal DCG(最佳排序)
```

3、3、2、2、1 IDCG=3 + (3+1.26+1+0.43)=8.69

NDCG = DCG / IDCG = 0.88

NDCG(Normalized discounted cumulative gain)

- $f(\mathbf{r}, \mathbf{q}, \mathbf{d})$ → score → order → metric
- Reducing ranking problem to
 - Regression
 - $O(f(Q,D),Y) = -\sum_{i} ||f(q_{i},d_{i}) y_{i}||$
 - (multi-)Classification
 - $O(f(Q,D),Y) = \sum_i \delta(f(q_i,d_i) = y_i)$

Subset ranking

• Fit relevance labels via regression

$$- \hat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left[\sum_{j=1}^{m} (f(x_{i,j}, S_i) - y_{i,j})^2 \right]$$

Emphasize more on relevant documents

•
$$\sum_{j=1}^{m} w(x_j, S)(f(x_j, S) - y_j)^2 + u \sup_j w'(x_j, S)(f(x_j, S) - \delta(x_j, S))^2_+$$

Weights on each document

Most positive document

• Fit relevance labels via classification

- Position of documents are ignored
 - Penalty on documents at higher positions should be larger

• Cannot directly optimize IR metrics $-(0 \rightarrow 1, 2 \rightarrow 0)$ worse than (0->2, 2->4)

$-f(r, q, d1, d2) \rightarrow partial order \rightarrow order \rightarrow metric$

- Relative ordering between different documents is significant
- E.g., $(0 \rightarrow 2, 2 \rightarrow 4)$ is better than $(0 \rightarrow 1, 2 \rightarrow 0)$

Ranking SVM

Ranking SVM

Ranking SVM

Aim is to classify instance pairs as correctly ranked or incorrectly ranked

Train data: $\{((x(1)i,x(2)i),yi)\},i=1,\cdots,m$

1 . _____

$$\begin{split} \min_{\omega,\xi} \frac{1}{2} \|\omega\|^2 + C \sum_{i=1}^m \xi_i \\ s.t. y_i \left\langle \omega, x_i^{(1)} - x_i^{(2)} \right\rangle \ge 1 - \xi_i \Big| \qquad \min_{\omega} \sum_{i=1}^m \left[1 - y_i \left\langle \omega, x_i^{(1)} - x_i^{(2)} \right\rangle \right]_+ + \lambda \|\omega\|^2 \qquad (5) \end{split}$$

$$\xi_i \ge 0$$
 $i = 1, \dots, m,$

RankingNet

$$P_{ij} \equiv P(U_i \triangleright U_j) \equiv \frac{1}{1 + e^{-\sigma(s_i - s_j)}}$$

$$C = -\bar{P}_{ij}\log P_{ij} - (1 - \bar{P}_{ij})\log(1 - P_{ij})$$

数据挖掘实验室

Data Mining Lab

LESS IS MORE

$$C = \frac{1}{2}(1 - S_{ij})\sigma(s_i - s_j) + \log(1 + e^{-\sigma(s_i - s_j)})$$
$$C = \min\sum_{(i,j)\in P} C_{ij}$$
$$w_k \to w_k - \eta \frac{\partial C}{\partial w_k} = w_k - \eta \left(\frac{\partial C}{\partial s_i} \frac{\partial s_i}{\partial w_k} + \frac{\partial C}{\partial s_j} \frac{\partial s_j}{\partial w_k}\right)$$

- Predicting relative order
 - Getting closer to the nature of ranking
- Promising performance in practice
 - Pairwise preferences from click-throughs

LambdaRank

Can we directly optimize the ranking? $f \rightarrow \text{order} \rightarrow \text{metric}$

数据挖掘实验室

LambdaRank

$$\frac{\partial C}{\partial w_{k}} = \sum_{(i,j)\in P} \frac{\partial C_{ij}}{\partial w_{k}} = \sum_{(i,j)\in P} \frac{\partial C_{ij}}{\partial s_{i}} \frac{\partial s_{i}}{\partial w_{k}} + \frac{\partial C_{ij}}{\partial s_{j}} \frac{\partial s_{j}}{\partial w_{k}}$$
$$\frac{\partial C_{ij}}{\partial s_{i}} = \frac{\partial \frac{1}{2} (1 - S_{ij})(s_{i} - s_{j}) + \log(1 + e^{-(s_{i} - s_{j})})}{\partial s_{i}} = -\frac{\partial C_{ij}}{\partial s_{i}}$$
$$\frac{\partial C}{\partial w_{k}} = \sum_{(i,j)\in P} (\frac{1}{2} (1 - Si_{j}) - \frac{1}{1 + e^{s_{i} - s_{j}}})(\frac{\partial s_{i}}{\partial w_{k}} - \frac{\partial s_{j}}{\partial w_{k}}) = \sum_{(i,j)\in P} \lambda_{ij}(\frac{\partial s_{i}}{\partial w_{k}} - \frac{\partial s_{j}}{\partial w_{k}})$$

$$\lambda_{ij} = \frac{\partial C(s_i - s_j)}{\partial s_i} = \frac{1}{2} (1 - S_{ij}) - \frac{1}{1 + e^{s_i - s_j}} \qquad S_{ij} = 1$$

LambdaRank

$$\lambda_{ij} = -\frac{1}{1 + e^{s_i - s_j}} \left| \Delta_{NDCG} \right|$$

Loss function

$$C_{ij} = \log(1 + e^{-(s_i - s_j)}) \left| \Delta_{NDCG} \right|$$

LambdaMART

GBDT(Gradient Boosting Decision Tree) named: MART(Multi ple Additive Regression Tree)

Algorithm: LambdaMART set number of trees N, number of training samples m, number of leaves per tree L, learning rate η for *i* = 0 to *m* do 1.initialization //If BaseModel is empty, set $F_0(x_i) = 0$ $F_0(x_i) = \text{BaseModel}(x_i)$ end for for k = 1 to N do for i = 0 to m do 2.Calucate lambada and weight $y_i = \lambda_i$ $w_i = \frac{\partial y_i}{\partial F_{k-1}(x_i)}$ and for // Create L leaf tree on $\{x_i, y_i\}_{i=1}^m$ ${R_{lk}}_{l=1}^{L}$ 3.Calculate node output // Assign leaf values based on Newton step. $F_k(x_i) = F_{k-1}(x_i) + \eta \sum_l \gamma_{lk} I(x_i \in R_{lk})$ // Take step with learning rate η . 4.Update model end for

• Evolution

Support Vector Machine

- RankingSVM
- Minimizing the pairwise loss

SVM-MAP

• Minimizing the structural loss

 $\begin{array}{ll} \text{minimize:} & V(\vec{w}, \vec{\xi}) = \frac{1}{2} \ \vec{w} \cdot \vec{w} + C \ \sum \xi_{i,j,k} \\ \text{subject to:} \\ \forall (d_i, d_j) \in r_1^* : \vec{w} \Phi(q_1, d_i) \ge \vec{w} \Phi(q_1, d_j) + 1 - \xi_{i,j,1} \\ \vdots \\ \forall (d_i, d_j) \in r_n^* : \vec{w} \Phi(q_n, d_i) \ge \vec{w} \Phi(q_n, d_j) + 1 - \xi_{i,j,n} \\ \forall i \forall j \forall k : \xi_{i,j,k} \ge 0 \end{array} \\ \begin{array}{ll} \text{Loss defined on the} \\ \end{array} \qquad \begin{array}{ll} \min \\ \sum \\ \mathbf{U} \\ \mathbf$

number of mis-ordered document pairs

Loss defined on the quality of the whole list of ordered documents

What did we learn

- Taking a list of documents as a whole
 - Positions are visible for the learning algorithm
 - Directly optimizing the target metric
- Limitation
 - The search space is huge!

Summary

Learning to rank

Automatic combination of ranking features for optimizing IR evaluation metrics

Approaches

- Pointwise
 - Fit the relevance labels individually
 - Given a query-document pair, predict a score or label.
- Pairwise
 - Fit the relative orders
 - The input is a pair of results for a query, and the class is the relevance ordering relationship between them.
- Listwise
 - Fit the whole order
 - Directly optimize the ranking metric for each query.

	Pointwise	Pairwise	Listwise
Completion Rate	part	part	full
Input	(x, y)	(x_1, x_2, y)	$(x_1, x_2,, x_n, \pi)$
Output	f(x)	f(x)	f(x)
Train data Complexity	O(n)	$O(n^2)$	<i>O</i> (<i>n</i> !)
performance	1	2	3

数据挖掘实验室

Data Mining Lab

LESS IS MORE

Category	Algorithms
Pointwise	subset ranking ; McRank; Prank
Pairwise	Ranking SVM; RankBoost; RankNet
Listwise	Lambda Rank; Lambda MART; ListNet; ListMLE; AdaRank; SVMap

Summary

Reference

- Subset Ranking using Regression D.Cossock and T.Zhang, COLT 2006
- Ranking with Large Margin Principles
 - A. Shashua and A. Levin, NIPS 2002
- Optimizing Search Engines using Clickthrough Data Thorsten Joachims, KDD'02
- An Efficient Boosting Algorithm for Combining Preferences
 Y. Freund, R. Iyer, et al. JMLR 2003
- A Regression Framework for Learning Ranking Functions Using Relative Relevance Judgments Zheng et al. SIRIG'07
- Accurately Interpreting Clickthrough Data as Implicit feedback Thorsten Joachims, et al., SIGIR'05
- From RankNet to LambdaRank to LambdaMART: An Overview Christopher J.C. Burges, 2010
- AdaRank: a boosting algorithm for information retrieval Jun Xu & Hang Li, SIGIR'07
- A Support Vector Machine for Optimizing Average Precision Yisong Yue, et al., SIGIR'07

Thanks

By R. Wu

